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Abstract
The concept of multi-principal component has created promising opportunities for the
development of novel high-entropy ceramics for extreme environments encountered in
advanced turbine engines, nuclear reactors, and hypersonic vehicles, as it expands the
compositional space of ceramic materials with tailored properties within a single-phase solid
solution. The unique physical properties of some high-entropy carbides and borides, such as
higher hardness, high-temperature strength, lower thermal conductivity, and improved
irradiation resistance than the constitute ceramics, have been observed. These promising
properties may be attributed to the compositional complexity, atomic-level disorder, lattice
distortion, and other fundamental processes related to defect formation and phonon scattering.
This manuscript serves as a critical review of the recent progress in high-entropy carbides and
borides, focusing on synthesis and evaluations of their performance in extreme
high-temperature, irradiation, and gaseous environments.
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1. Introduction

Key structural components in next-generation nuclear react-
ors, turbine engines, and hypersonic vehicles require novel
materials that can fulfill the needs of extreme environments,
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including high temperatures, chemical reactivities, neutron
irradiation, and corrosive coolants. To operate in such harsh
environments, materials must possess outstanding physical
and chemical properties, such as superior resistance to vari-
ous external stimuli such as creep, thermal shock, oxida-
tion, or irradiation damage at elevated temperatures. Mater-
ials currently in use or under consideration, including stain-
less steels, nickel superalloys, refractory metals, and SiC, are
unsuited to meet one or more property requirements at high
temperatures.

The ‘multi-principal component’ concept has introduced
promising opportunities for discovering novel materials.
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High-entropy alloys (HEAs), a subset of the single-phase con-
centrated solid-solution alloys [1], have gained significant
attention in recent years [2]. Different from traditional
alloys, HEAs contain four or more metallic elements in
equimolar or near-equimolar concentrations and can form a
stable single-phase lattice structure [3], such as FeNiMnCr
[4] or Ti2ZrHfV0.5Mo0.2 [5]. The ‘multi-principal compon-
ent’ concept has been also used to develop novel thermo-
electric materials, such as GeTe-based thermoelectric alloy
Ge0.61Ag0.11Sb0.13Pb0.12Bi0.01Te [6] and high-entropy chalco-
genide Pb0.89Sb0.012Sn0.1Se0.5Te0.25S0.25 [7, 8]. Compared to
the widely reported HEAs, high-entropy ceramics (HECs) are
more recently discovered and for that reason investigated to a
lesser extent. HECs are characterized by at least four metal-
lic elements in an equal or near-equal atomic ratio in the M
position (M = metal), while a nonmetal element occupies
the X positions (X = C, B, N, or O). HECs include oxides
[9, 10], diborides [11, 12], carbides [13, 14], nitrides [15],
and silicides [16–19]. Although the configurational entropy is
increased through the mixing of metal components in equi-
atomic ratio, the phase stability of HECs may be dictated by
chemical potential, which is the partial derivative of the Gibbs
free energy with respect to a particular component, not the
configurational entropy or the number of metal components.
Tang et al, recently investigated the thermodynamic stabil-
ity of high-entropy carbides via the CALculation of PHAse
Diagrams approach and suggested that their formation is con-
trolled by the competition between entropy and enthalpy of
mixing [20]. Furthermore, their thermodynamic calculations
indicate that many experimentally synthesized high-entropy
carbides are not at equilibrium at room temperature.

Recently, the concept of HECs has been expanded to
the compositionally-complex ceramics that also include
non-equimolar compositions and medium-entropy ceramics
[21, 22]. Thus, the terminology of ‘HECs’ may be better
referred to as ‘multi-principal component ceramics’ to avoid
confusions. The main benefits of ‘high entropy’ ceramics may
be the tailorability of physical and chemical properties within
a single-phase solid solution.

The compositional complexity in HECs induces signific-
ant lattice distortion because of the difference in atomic sizes
and bond strengths of the atoms in the M positions. It is
worth noting that the chemical bonding in HECs can be a
mixture of ionic, covalent, and metallic bonding [11, 23]. In
2015, Rost et al, first discovered an entropy stabilized single-
phase rock salt structure oxide, (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O,
made by quenching [24]. Gild et al, first synthesized a fam-
ily of high-entropy diborides using spark plasma sintering
(SPS) in 2016, including (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2 and
(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2, which exhibit a single-phase
solid solutionwith a layered hexagonal lattice [11]. In 2018 the
high-entropy carbides, including (Hf0.25Ta0.25Zr0.25Ti0.25)C
and (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C, were first reported by Yan
et al [13] and Castle et al [25], using SPS from monocarbide
powders in equimolar concentrations.

Several excellent reviews already cover high-entropy
oxides [26, 27]. For the specific applications in extreme

environments, this manuscript focuses on high-entropy
carbides and borides. MC-type high-entropy carbides, e.g.
(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C, exhibit a rock-salt B1 structure
(figure 1(a), space group Fm3̄m), which shares the same cubic
structure of most transition metal monocarbides except for δ-
WC that has the Bh structure (P6̄m2, hexagonal lattice) [28].
The B1 crystal structure of high-entropy carbides has been
confirmed by many x-ray diffraction experiments. A neut-
ron diffraction experiment of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C was
performed at the Spallation Neutron Source of Oak Ridge
National Laboratory using the VULCAN diffractometer [29].
The neutron diffraction result agrees with the rock-salt aver-
age structure model, with the C atoms at the (0,0,0) crystallo-
graphic site and the metal elements mixed at the (1/2,1/2,1/2)
site and fully disordered over the long-range scale. The
recent research on high-entropy carbides has revealed reduced
thermal conductivity [13], improved hardness [30–32], and an
improved oxidation resistance [33–35] compared to transition
metal monocarbides, such as ZrC and TiC [36]. These features
make them promising candidate materials for extreme envir-
onments, such as carbide fuels or fuel claddings in nuclear
reactors or thermal protection systems (TPSs) of hypersonic
re-entry vehicles.

MB2-type high-entropy diborides, e.g. (Hf0.2Zr0.2Ta0.2
Mo0.2Ti0.2)B2, exhibit a hexagonal lattice (figure 1(b), space
group P6/mmm). Most of transition metal diborides have
the AlB2-type structure (P6/mmm) while WB2 forms ReB2-
type (P63/mmc) structure [37]. The layered AlB2 structure
of high-entropy diborides consists of alternating boron and
metallic layers, with mixed covalent and ionic M-B bonds
between metal atoms and boron [11]. High-entropy diborides
showed better oxidation resistance and higher hardness than
the average properties of the individual transitional metal
diborides [11]. The potential applications of these high-
entropy diborides include scramjet engine components, lead-
ing edges [37], TPS for hypersonic vehicles, and solar power
concentrators [38].

Despite the extensive research in the recent decade, HECs
continue to attract the significant interest of the international
scientific community as they can bring new opportunities to
enlarge the compositional space of ceramic materials with
tailored properties within a single-phase solid solution. The
promising properties of HECs have been attributed to the
atomic-level disorder, lattice distortion, compositional com-
plexity, and other fundamental processes related to the defect
formation and phonon scattering that are still under invest-
igation. The key question is how such an increased num-
ber of principal metal elements chemical disorder may influ-
ence the physical and chemical properties of HECs. Some
characteristics of HECs are similar to HEAs (e.g. lattice dis-
tortion), but ceramics may have mixed chemical bonding
and unique non-stoichiometry that are more complicated than
HEAs. For example, the influence of ionic/covalent bonds and
carbon/boron non-stoichiometry on the physical and chemical
properties of HECs remain less explored.

This manuscript serves as a critical review of the most
recent progress in high-entropy carbides and diborides and
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Figure 1. The crystal structure of (a) MC-type high-entropy carbide and (b) MB2-type high-entropy diboride.

focuses on the evaluation of their performance in extreme
environments. It shows that these novel ceramic materials
need to bemanufactured using high-temperature sintering pro-
cesses, and some compositions exhibit superior hardness and
strength at high temperature and resistance to irradiation dam-
age and oxidizing environments.

2. Synthesis of high-entropy carbides and
diborides

Three main synthesis routes of high-entropy carbides
have been developed based on the starting raw mater-
ials (figure 2): (1) commercial metal carbide powders
[13, 23, 25, 29, 32, 39–41]; (2) metallic element and carbon
powders [42, 43]; and (3) metal oxide powders and carbon
powders. Similarly, the synthesis methods of high-entropy
diborides follow three principal routes based on the raw start-
ing materials: (1) commercial metal diboride powders [11];
(2) metallic element and boron powders [44–46]; and (3)
metal oxide, carbon, and B4C powders [44, 46–50]. Wei et al
[51] compared the high-entropy carbides synthesized from
these three routes and found that the microstructures and ele-
ments distribution are influenced by the starting materials.
Fine starting raw powders result in more homogeneous micro-
structures and element distribution while introducing a higher
oxygen contamination [52]. In all the three synthesis routes,
a significant challenge is the residual oxygen content in the
as-sintered materials. The final oxygen contamination, which
depends on the starting raw powders, is difficult to be fully

eliminated during powder processing and high-temperature
sintering processes.

After the powder mixtures are processed by ball milling,
sintering of high-entropy carbide or diboride powders has
been successfully achieved by pressure-assisted techniques
including SPS [13, 23, 25, 29, 32, 39–41], hot pressing
(HP) [53, 54], and selective laser sintering (SLS) [55].
Both SPS and HP require the aid of temperatures from
1800 ◦C to 2300 ◦C to overcome the low diffusion coeffi-
cients due to the strong metal–carbon or metal–boron bond-
ing while employing a pressure of tens to hundreds of
MPa to better assist final densification. Compared to HP,
SPS is able to rapidly producing fully dense materials at
a lower temperature in a shorter time [56]. During SPS, a
pulsed direct electric current passes through an electrically
conductive piston-die assembly (typically made of graph-
ite) and carbide or diboride ceramic powders, which are
heated by Joule heating from the electric current passing
through them in vacuum environment. Zhang et al first
developed the SLS process for ultrafast (in seconds) reactive
sintering of a single-phase non-equiatomic Zr–Nb–Hf–Ta–C
using a Yb fiber laser from a powder mixture of constitute
monocarbides [55].

Removing porosity, refining grain size, and getting rid of
any contamination are desirable features to obtain superior
mechanical and thermal properties of high-entropy carbides
and borides. To achieve these results, two important aspects
including the purity and particle size of starting powders must
be controlled. Smaller particle size will enable a relatively
lower sintering temperature and thus less grain growth
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Figure 2. Synthesis routes of high-entropy carbides: carbothermal reduction (CTR), borothermal reaction (BTR) and boro-carbothermal
reduction (BCTR).

during sintering [57]. Impurity control, especially oxygen,
is crucial during the carbide/boride powder processing and
sintering process. Wang et al used a two-step SPS tech-
nique to sinter (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C with a submicron
grain size range of 0.4–0.6 µm [29]. Its grain growth kin-
etics appeared to be limited at 1300 ◦C and 1600 ◦C,
indicating that the compositional complexity may increase
grain boundary complexity and reduce the grain bound-
ary energy. Ma et al [58, 59] used high-pressure sintering
to synthesize nanocrystalline (Hf0.25Zr0.25Ta0.25Ti0.25)C and
(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2 ceramics under an external pres-
sure of several GPa, which showed an enhanced hardness
because of the grain refinement strengthening [59].

3. Thermal stability

The melting or decomposition temperature of high-entropy
carbides and diborides has not been experimentally meas-
ured. Liu et al, estimated the melting point of quatern-
ary metal carbides from first-principles calculations and pre-
dicted that 15 high-entropy carbides have melting point above
3000 ◦C, in which (Hf0.25V0.25Nb0.25Ta0.25)C has the highest
melting point of 4400 ◦C [60]. In a preliminary study,
(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C samples were annealed at tem-
peratures of 500 ◦C, 800 ◦C, 1140 ◦C, and 1700 ◦C for
two hours under Ar atmosphere. X-ray diffraction analyses
indicated no phase transformation at these temperatures, sug-
gesting that this HEC phase is thermally stable from 25 ◦C
to 1700 ◦C (figure 3). However, the high-entropy materi-
als may have a high activation energy for diffusion and thus
long-lasting annealing experiments will be required to study
their phase transformation or decomposition behavior at high
temperatures.

Figure 3. X-ray diffraction patterns of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C
before and after annealing at 1700 ◦C for 2 h in Ar.

4. Mechanical properties

The retention of mechanical properties at elevated temper-
atures is important because it affects the high-temperature
applicability of HECs. The mechanical properties of these
ceramics are dependent on the temperature, but also are influ-
enced by microstructure-related factors such as the residual
porosity, grain size, and impurities such as undesired oxides.
The measured values of hardness, strength and fracture tough-
ness may also depend on the methods selected to test samples.
Specifically, the flexural strength is reported to be measured
in a 3-point or 4-point bending configuration. However, the
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fracture toughness can be measured by single-edge V notched
beam (SENVB), chevron notch beam (CNB), and indentation-
induced crack measurement (ICM): they give rise to a range
of test results where SENVB and CNB are considered more
reliable than ICM [61].

At room temperature, the reported data for the fracture
toughness and flexural strength of the high-entropy carbides
range from 300 to 450 MPa and 3–6 MPam1/2, respectively
[62, 63]. Higher flexural strength can be achieved through
porosity removal and refining the final grain size. When the
mean grain size of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C reduced from
16.5 to 0.6 µm, the fracture toughness and flexural strength
are increased by 20% and 25%, respectively [29]. The primary
fracture mode changed from the trans-granular cleavage to
intergranular cracking. High-entropy diborides have reported
mean values of 4-point flexural strength of 339–528 MPa, and
fracture toughness of 3.6–4.7 MPa m1/2 at room temperature
[64–67].

The most reported mechanical property of high-entropy
carbides and diborides at room temperature is hardness,
measured using a Vickers micro-indenter or a Berkovich
nano-indenter. The high hardness and elastic modulus of the
transition metal carbides, such as HfC, are originated from
their strong metal-carbon covalent bonds. The local bonding
lengths of each metal–carbon pair in high-entropy carbides
may vary around each metal element, causing the chemical
bonding effect [68]. It is observed by many studies that the
hardness of high-entropy carbides is much higher than the
estimated value by the rule-of-mixture [25]. A similar trend
is also observed in high-entropy diborides [11]. The enhanced
hardness in high-entropy carbides has attracted signification
interest. Several mechanisms have been proposed, including
mass inhomogeneity [32], solid solution hardening [25], dis-
location core atomic randomness [69], and valence electron
concentration (VEC) [70]. The mass inhomogeneity in high-
entropy carbides may cause impedance mismatch along the
path of dislocations, generating reflections and scattering of
the activation energy, which results in the increased resistance
to plastic deformation macroscopically [32]. The atomic size
mismatch in the solid solution [25] causes the lattice distor-
tion, and may limit the motion of dislocations necessary for
slip and plastic deformation. Wang et al [69] showed that the
random interactions between different elements at a disloca-
tion core can increase the barrier to dislocation slip, based on
the calculation of Peierls stress of the edge dislocation by dens-
ity functional theory (DFT). Hossain et al [70] suggested that
VEC regulates the Fermi energy and alters the bonding char-
acteristics, which was used to design and predict properties
of high entropy carbides. The highest hardness is achieved at
VEC 8.4.

Flexural strength data of some high-entropy carbides at
elevated temperatures have been reported in some studies, sug-
gesting that these ceramics can retain their initial strength up to
1800 ◦C. Compared to individual monocarbides, some high-

Figure 4. Effect of temperature on the flexural strength of
high-entropy carbide vs. monocarbides. The data are summarized
from the literature [30, 72–76].

entropy carbides show flexural strength retention to higher
temperatures (figure 4). However, more test data is needed to
compare the flexural strength of high-entropy carbides with
that of monocarbides and binary carbides to understand the
effects of chemical bonding and compositions. Feng et al [71]
reported the flexural strength of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C
ceramics with relative density of above 99% at elevated tem-
peratures up to 2300 ◦C. Mean flexural strength was 421 MPa
at 25 ◦C and relatively stable until 1800 ◦C, before decreas-
ing linearly from 423 MPa at 1800 ◦C to 318 MPa at 2000 ◦C
and 93 MPa at 2300 ◦C. Demirskyi et al [30, 72] also reported
that the average flexural strength of (Ta1/3Zr1/3Nb1/3)C with a
relative density of 97% was 460 MPa at room temperature,
489 MPa at 1600 ◦C, then dropped to 366 MPa at 1800 ◦C
and 139 MPa at 2000 ◦C. The mechanism underlying the
strength drop above 1800 ◦C needs more investigations, which
is very likely related to creep deformation or elastic modulus
reduction.

5. Thermal properties

Electrons and phonons are the primary carriers for trans-
ferring heat in transition metal carbides. [77] Yan et al,
first reported in 2018 that the high-entropy carbide,
(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C, showed a significantly reduced
thermal diffusivity compared to the monocarbides TaC, ZrC,
NbC, TiC, and HfC at room temperature, which was meas-
ured by the laser flash technique [13]. Wang et al, compared
the thermal conductivity of the 4- and 5-metal high-entropy
carbides, with the corresponding mono, binary, and ternary
carbides as a function of the number of metal elements in
carbides from the data in the literature [78], and concluded
that the thermal conductivity of transition metal carbides

5



Int. J. Extrem. Manuf. 5 (2023) 022002 Topical Review

Figure 5. Thermal conductivity of (Hf0.25Ta0.25Zr0.25Nb0.25)C from 25 ◦C to 2000 ◦C compared to the values of NbC, ZrC, HfC, and TaC
along with an average value predicted by a linear molar rule of mixtures (ROM). [82] John Wiley & Sons. © 2022 The American Ceramic
Society.

decreases with more metal elements at room temperature.
Because of the difference in atomic size and bonding strength
of the metal atoms, there exists significant lattice distortions
at atomic scale in HECs where atoms of differing charac-
teristics coexist in the same lattice [79]. The fluctuations of
mass and interatomic force constants in HECs, due to lat-
tice distortion and the difference in bond strengths, may lead
to severe scattering of phonons. It is important to note that
the thermal conductivity of transition metal carbide ceram-
ics is also influenced by other defects, such as the porosity,
carbon stoichiometry [80], and irradiation-induced defects
[81]. Thus, it may be possible to tailor the thermal conduct-
ivity of high-entropy carbides by controlling compositions
and defects.

The thermal conductivity of (Hf0.25Ta0.25Zr0.25Nb0.25)C
was measured from 25 ◦C to 2000 ◦C, which was lower than
the constitute monocarbides except for ZrC that has similar
values at 500 to 1600 ◦C (figure 5) [82, 83]. The contributions
of electron and phonon to the thermal conductivity were stud-
ied at 25 ◦C–1600 ◦C, suggesting that the increase in thermal
conductivity with temperature was mainly due to the contribu-
tion of electron, while the contribution of phonon exhibited a
weak dependence with temperature.

The thermal conductivity of high-entropy diborides
was also lower than the constitute diborides. Gild
et al, showed that the thermal conductivity of single-
phase high-entropy diborides at room temperature,
(Hf0.2Zr0.2Ti0.2Ta0.2Cr0.2)B2, (Hf0.2Zr0.2Ti0.2Ta0.2Mo0.2)B2,
and (Hf0.2Zr0.2Ti0.2Ta0.2Nb0.2)B2, was 12–25 W (m K)−1 and
only 10% to 20% of the reported data of ZrB2 and HfB2

[50]. Zhao et al, reported that the thermal conductivity of
(Mo0.2Ta0.2Ni0.2Cr0.2W0.2)B was 2.05 W (m K)−1 at 400 ◦C,
which is much lower than that of the individual borides [84].
Phonon thermal conductivity of (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2

from room temperature to 2400 ◦C was calculated by the

Green–Kubo method [85]. The phonon thermal conductivity
along c direction is lower than that along a direction, which is
because the stronger bonding in the basal plane than normal to
it. Phonon thermal conductivity of this high-entropy diboride
decreases slowly with the temperature.

The thermal expansion coefficient data of HECs is
limited and may need more studies to understand the
composition effect. The thermal expansion coefficient of
(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C measured using a dilatometer
(6.44 × 10−6 K−1) at room temperature was comparable
to that of the five monocarbides (ZrC, HfC, NbC, TiC, and
TaC) [13]. Zhang et al [77] investigated the temperature-
dependent properties of (Hf0.2Zr0.2Ta0.2Ti0.2M0.2)C, M = Cr,
V, Nb, W, or Mo, by DFT calculations: it was shown that
(Hf0.2Zr0.2Ta0.2Ti0.2V0.2)C has the smallest linear thermal
expansion coefficient at high temperature. A temperature-
dependent synchrotron-radiation x-ray diffraction ana-
lysis was conducted at 298–1273 K to investigate the
thermal expansion of a nearly equimolar single-phase
(TiTaNbHfZr)B2 [86]. Significant anisotropy between pris-
matic and basal planes was determined quantitatively. The
thermal expansion coefficient of the a and c directions at
1000 K is 6.5 × 10−6 K−1 and 8 × 10−6 K−1, respect-
ively. The behavior of (TiTaNbHfZr)B2 is differently from
that expected by the rules for ideal solid solution mixture.
Microcracks were found inside the sintered ceramics and inter-
preted as arising from anisotropic thermal expansion, resulting
in thermal residual stresses in the grain matrix that exceeds
their failure thresholds. Very recently, Monteverde et al, ana-
lyzed the anisotropic thermal expansion of a wide spectrum
of high-entropy multicomponent AlB2-type diboride solid
solutions [79]: in-plane and out-of-plane non-linear thermal
expansion were found to be strongly dependent not only on
the chemical complexity and composition but also on the
processing conditions.
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6. Irradiation resistance

Transition metal carbides such as ZrC are promising can-
didate materials for the carbide-based composite-type fuels
in the gas-cooled fast reactor [87], the coating material for
tristructural-isotropic particle fuels in a high-temperature, gas-
cooled reactor [88], and (U,Zr)C carbide fuels for space nuc-
lear propulsion [89]. These nuclear applications of carbides
result from their high thermal conductivity, high melting tem-
perature, high hydrogen stability, good fission product reten-
tion, and outstanding resistance to amorphization [90]. The
thermal conductivity of high-entropy carbide becomes close
to ZrC at 500 ◦C–1600 ◦C (figure 5), which may be suitable
for fuel matrix and cladding applications.

Compared to monocarbides, the increasing number of prin-
cipal metal elements in high-entropy carbides creates atomic-
level disorder and a heterogeneous potential energy landscape,
which alter vacancy and interstitial migration energies. Con-
sequently, the migration and clustering processes of radiation-
induced defects may be suppressed, resulting in slow growth
of defect clusters. In HEAs, extensive research has demon-
strated that modifying alloy chemical complexity can con-
trol the defect production and early-stage damage formation
dynamics, finally enhance late-stage radiation tolerance of
HEAs under extreme radiation conditions. In particular, the
chemical complexity can affect the irradiation defect evolu-
tion in five aspects, including the electronic effects (e.g. 3d
electronic structures) [83, 91], atomic effects (e.g. atomic-
level inhomogeneity and energy landscape [92, 93]), coupled
electronic and atomic effects (e.g. nonadiabatic interactions of
electrons with ions) [94], defect evolution (e.g. pinning the
point defects) [95], and microstructural evolution (e.g. sup-
pressing void swelling and helium bubble growth) [96, 97].
Considering the similarity between HEAs and HECs as well
as their significant differences in chemical bonding, some of
the similar effects may occur in HECs and are under continu-
ing experimental verifications.

The first studies addressing the irradiation resistance of
HECs were conducted in 2019 [40, 98]. Despite substantial
variation of the He concentration along the depth of specimen,
the diameter of helium bubbles in (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C
did not exceed 1 nm after irradiation by 120 keV helium ion
at room temperature [40]. The motion and coalescence of
helium bubbles appeared to be suppressed by the chemical
disorder. (Zr0.25Ta0.25Nb0.25Ti0.25)C showed high phase stabil-
ity with no amorphization, phase transformation, or radiation-
induced segregation of elements after irradiation by 3 MeV
Zr at 25 ◦C, 300 ◦C, and 500 ◦C to 8.0 × 1015 ions cm−2

[equal to 20 peak displacements per atom (dpa)] [98]. A rel-
ative lattice parameter expansion of ∼0.2% was measured
by x-ray diffraction. The irradiation-induced microstructure
changes were comprised of faulted Frank loops with Bur-
gers vectors b= a/3⟨111⟩ and perfect dislocation loops with
Burgers vectors b= a/2⟨110⟩ (figure 6) [98]. The dislocation
loops remain as small as less than 3 nm under these irradiation
conditions, indicating the suppressed clustering and growth of

irradiation radiation-induced defects in high-entropy carbides.
Very recently Zhu et al [99] reported the irradiation damage in
(W0.2Ti0.2V0.2Nb0.2Ta0.2)C by 1.0 MeV C ions at 25 ◦C and
650 ◦C. Relative lattice expansion was introduced by the irra-
diation and saturated at 0.6%. Irradiation-induced defects were
dislocation loops at low dose (<5 dpa) and dislocation net-
works at higher dose.

It is important to understand the contribution of these
irradiation defects to physical properties of high-entropy
carbides. However, very few test data has been reported in
the literature. Wang et al, conducted nanoindentation tests
of 3 MeV Zr2+-irradiated (Zr0.25Ta0.25Nb0.25Ti0.25)C, which
showed that the hardness increased by 8%–10% compared to
the unirradiated sample [98]. Such an irradiation hardening
effect was possibly caused by dislocation loops that hinder
the slip movements during the nanoindentations. Dennett
et al [81] studied the thermal conductivity of 3 MeV Zr2+-
irradiated (Zr0.25Ta0.25Nb0.25Ti0.25)C using a laser thermal
reflectance technique. The reduction in thermal conductivity
was observed to be greatest at low irradiation temperatures,
suggesting that dislocation loops contribute little to phonon
scatteringwhile nanoscale defects serve asmore effective scat-
terers. Overall, the combination of high irradiation resistance
with other physical properties such as high strength and hard-
ness may indicate that high-entropy carbides are promising
materials for advanced nuclear energy systems.

7. High-temperature oxidation

Since most engine and hypersonic frontier materials are
exposed to oxidizing fuels or aviation heating, the non-oxide
materials inevitably oxidize and form some combination of
solid, liquid, or gaseous reaction products [100, 101]. In real
structural applications, very intense temperatures are gener-
ated rapidly by burning fuels or viscous flow due to friction
with the atmosphere. Therefore, the oxidation resistance is
one of the main characteristics associated with the selection of
materials for ultra-high temperature ceramics (UHTCs). Oxid-
ation may passivate the underlying substrates by forming pro-
tective oxide layers. Dealing with an active mechanism, the
reactions do not slow down until the substrate continuously
exposed to reactive species is completely consumed [102].
Traditionally, the design of oxidation-resistant materials relies
on the existence of elements that can oxidize and form a dense,
adherent and protective oxide layers, such as the oxides of Si,
Al, and Cr [103].

Current research about the oxidation rate of high-entropy
carbides involves oxidation of powder or bulk materials in
air [34, 104, 105], oxidation in water vapor [35], and in
1% O2 partial pressure [104, 106]. Most of the experi-
mental results showed that high-entropy carbides follow the
parabolic rate law at 800 ◦C–1600 ◦C [33–35, 105, 107],
which is related to the diffusion-controlled mass transport
mechanisms during the oxidation process. In high-entropy
diborides such as (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 [108] and
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Figure 6. Weak-beam dark-field TEM images of the irradiation-induced dislocation loops in (Zr0.25Ta0.25Nb0.25Ti0.25)C. Reprinted from
[98], Copyright (2020), with permission from Elsevier.

Figure 7. Schematic diagram of ablation mechanism model for (Hf0.25Ta0.25Zr0.25Nb0.25)C at 2227 ◦C. Reprinted from [109], Copyright
(2022), with permission from Elsevier.

(Hf0.2Mo0.2Zr0.2Nb0.2Ti0.2)B2 [46], there is significant oxida-
tion above 1300 ◦C due to the volatilization of B2O3 in the
intermediate temperature range of 1300 ◦C–1600 ◦C.

The preferential oxidation behavior in (Hf0.2Zr0.2Ta0.2
Nb0.2Ti0.2)C and (Hf0.2Zr0.2Ti0.2Ta0.2Nb0.2)B2 was studied by
Backman et al [106] both theoretically and experimentally for
5 min in 1% O2 atmosphere at 1700 ◦C. The preferential
oxidation of each metal component was related to the rel-
ative thermodynamic stability of their corresponding oxides.
The group IV metal elements (Hf, Zr, Ti) showed the most
favorable formation of oxides because their oxides have the
highest melting temperatures and are most thermodynamically
favored among the refractory elements. Preferential oxidation
also occurred according to relative thermodynamic stability
within the group IV metal elements, such as that oxidation of
Hf and Zrwasmore favorable than Ti in high entropy diborides

[106]. The preferential oxidation behavior indicates that the
high-entropy UHTCs can be designed to form an oxide scale
consisting of group IV metal elements.

Oxidation of high-entropy carbides at higher temperat-
ure has been investigated by ablation tests at 2000 ◦C and
above. The ablation behavior of (Hf0.25Ta0.25Zr0.25Nb0.25)C at
2100 ◦C [109] showed that Nb–Ta rich oxides were melted
and pushed to the edge of the specimen, while Zr–Hf rich
oxides with high melting temperature stay in the center of
sample to protect the substrate (see figure 7). The abla-
tion resistance of high-entropy carbides can be improved by
doping with nitrogen to form carbonitrides: the mass abla-
tion rate of (Ta0.2Hf0.2Zr0.2Ti0.2Nb0.2)C0.8N0.2 is reduced by
57% than (Ta0.2Hf0.2Zr0.2Ti0.2Nb0.2)C at 2227 ◦C [100]. The
enhanced ablation resistance was associated to the formation
of a densely packed oxides scale, which contains continuous
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Ta, Ti, Nb segregations and large Hf and Zr-rich grains that
slow down the inward diffusion of oxygen.

8. Conclusions and outlook

Operations in extreme environments such as in advanced tur-
bine engines, nuclear reactors or vehicles flying at hyper-
sonic speed require to design, synthesize, and process super-
ior materials that can function and outperform an extended
lifetime in a complex combination of heat fluxes, chemical
reactivities, neutron irradiation, and corrosive coolants. The
concept of multi-principal component has led to exploring the
center, yet unexplored region of phase diagrams, and provid-
ing new possibilities for discovering and developing ceramic
materials with novel compositions and superior properties.
With a much broader composition space, it becomes viable
to tailor their mechanical, thermal, and chemical properties to
match the complex requirements in extreme environments.

The key scientific question of how atomic disorder and
compositional complexity may influence the physical and
chemical properties of high-entropy carbides and borides cur-
rently remains poorly understood. While this emerging area
has triggered global interest and extensive research in the most
recent decade, some fundamental and engineering issues need
to be addressed in a short- and long-term timespan:

1. Both computational and experimental investigation are
essential to understand the role of the increasing number
of principal metal elements, overlapped chemical bond-
ing, and carbon/boron non-stoichiometry on properties
of high-entropy carbides or borides. These may cause
additional barriers to defect formation and migration,
which may control their irradiation damage and oxidation
processes.

2. Theoretical research is needed to reveal how the chemical
disorder affects the thermal transport, including the nature
of heat carriers and their propagation and scattering beha-
vior in a distorted lattice of HECs.

3. Experimental studies are necessary to investigate their
deformation behavior, flexural strength, fracture tough-
ness, and creep performance in high temperature and irra-
diation conditions.

4. New manufacturing processes need to be developed for
scale-up synthesis and sintering of HECs to produce
near-net-shape components for industry applications. In
particular, new opportunities are in the additive manu-
facturing processes using binders, lasers, and electron
beams.

5. The applications of high-entropy carbides and diborides
in extreme environments will need to address engineering
issues. Whether a HEC is suitable for the specific extreme
environment depends on many aspects of material prop-
erties and coupled environmental conditions (such as tem-
perature, heat flux, irradiation dose, chemical composition
of gases), which needs to be studied by a combination of
experimental tests and computational simulations.
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